Thursday, April 30, 2020

Digital Image Processing

CMSADSE05T: Digital Image Processing Lab Theory: 60 Lectures
1. Introduction (6 Lectures)
Light, Brightness adaption and discrimination, Pixels, coordinate conventions, Imaging Geometry, Perspective Projection, Spatial Domain Filtering, sampling and quantization.
2. Spatial Domain Filtering (7 Lectures) Intensity transformations, contrast stretching, histogram equalization, Correlation and convolution, Smoothing filters, sharpening filters, gradient and Laplacian.
3. Filtering in the Frequency domain (8 Lectures) Hotelling Transform, Fourier Transforms and properties, FFT (Decimation in Frequency and Decimation in Time Techniques), Convolution, Correlation, 2-D sampling, Discrete Cosine Transform, Frequency domain filtering.
4. Image Restoration (8 Lectures) Basic Framework, Interactive Restoration, Image deformation and geometric transformations, image morphing, Restoration techniques, Noise characterization, Noise restoration filters,
Adaptive filters, Linear, Position invariant degradations, Estimation of Degradation functions, Restoration from projections.
5. Image Compression (10 Lectures) Encoder-Decoder model, Types of redundancies, Lossy and Lossless compression, Entropy of an information source, Shannon's 1st Theorem, Huffman Coding, Arithmetic Coding, Golomb Coding, LZW coding, Transform Coding, Sub-image size selection, blocking artifacts, DCT implementation using FFT, Run length coding, FAX compression (CCITT Group-3 and Group-4), Symbol-based coding, JBIG-2, Bit-plane encoding, Bit-allocation, Zonal Coding, Threshold Coding, JPEG, Lossless predictive coding, Lossy predictive coding, Motion Compensation
6. Wavelet based Image Compression (5 Lectures) Expansion of functions, Multi-resolution analysis, Scaling functions, MRA refinement equation, Wavelet series expansion, Discrete Wavelet Transform (DWT), Continuous Wavelet Transform, Fast Wavelet Transform, 2-D wavelet Transform, JPEG-2000 encoding, Digital Image Watermarking.
7. Morphological Image Processing (7 Lectures) Basics, SE, Erosion, Dilation, Opening, Closing, Hit-or-Miss Transform, Boundary Detection, Hole filling, Connected components, convex hull, thinning, thickening, skeletons, pruning, Geodesic Dilation, Erosion, Reconstruction by dilation and erosion.
8. Image Segmentation (9 Lectures) Boundary detection based techniques, Point, line detection, Edge detection, Edge linking, local processing, regional processing, Hough transform, Thresholding, Iterative thresholding, Otsu's method, Moving averages, Multivariable thresholding, Region-based segmentation, Watershed algorithm, Use of motion in segmentation

No comments:

Post a Comment