// C++ program for implementation of Heap Sort
#include <iostream>
using namespace std;
// To heapify a subtree rooted with node i which is
// an index in arr[]. n is size of heap
void heapify(int arr[], int n, int i)
{
int largest = i; // Initialize largest as root Since we are using 0 based indexing
int l = 2 * i + 1; // left = 2*i + 1
int r = 2 * i + 2; // right = 2*i + 2
// If left child is larger than root
if (l < n && arr[l] > arr[largest])
largest = l;
// If right child is larger than largest so far
if (r < n && arr[r] > arr[largest])
largest = r;
// If largest is not root
if (largest != i) {
swap(arr[i], arr[largest]);
// Recursively heapify the affected sub-tree
heapify(arr, n, largest);
}
}
// main function to do heap sort
void heapSort(int arr[], int n)
{
// Build heap (rearrange array)
for (int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);
// One by one extract an element from heap
for (int i = n - 1; i >= 0; i--) {
// Move current root to end
swap(arr[0], arr[i]);
// call max heapify on the reduced heap
heapify(arr, i, 0);
}
}
/* A utility function to print array of size n */
void printArray(int arr[], int n)
{
for (int i = 0; i < n; ++i)
cout << arr[i] << " ";
cout << "\n";
}
// Driver program
int main()
{
int arr[] = { 60 ,20 ,40 ,70, 30, 10};
int n = sizeof(arr) / sizeof(arr[0]);
//heapify algorithm
// the loop must go reverse you will get after analyzing manually
// (i=n/2 -1) because other nodes/ ele's are leaf nodes
// (i=n/2 -1) for 0 based indexing
// (i=n/2) for 1 based indexing
for(int i=n/2 -1;i>=0;i--){
heapify(arr,n,i);
}
cout << "After heapifying array is \n";
printArray(arr, n);
heapSort(arr, n);
cout << "Sorted array is \n";
printArray(arr, n);
return 0;
}
//code by Prajwal Chougale