Tuesday, February 23, 2021

4. INPUT PROCESSING USING ID.

 4. INPUT PROCESSING USING ID.



3. MOVES OF TURING MACHINE USING ID.

 3. MOVES OF TURING MACHINE USING ID.




2. REPRESENTATION OF TURING MACHINE.


 

1. DEFINITION TURING MACHINE .

 1. DEFINITION TURING MACHINE . 




question theory of automata from Mishra CHAPTER 9

 1. DEFINITION TURING MACHINE .  ANSWER LINK  + 

2. REPRESENTATION OF TURING MACHINE.  ANSWER LINK

3. MOVES OF TURING MACHINE USING ID.  ANSWER LINK + 

4. INPUT PROCESSING USING ID.  ANSWER LINK

5. DESIGN OF TURING MACHINES - 

         I )  Design a Turing machine to recognize all stlings consisting of an even number

             of 1's. ANSWER LINK + 

        II )  Design a Turing machine over {I. b} which can compute a concatenation

              function over L = {I}. If a pair of words (W1,W2) is the input. the output has

              to be W1.W2. ANSWER LINK

      III )  Design a TM that accepts {0N1N: n >=1}. ANSWER LINK

     IV )  Design a Turing machine M to recognize the language  1N2N3N :N>=1

      V)   Construct a TM that accepts the language 0 1* + 1 0*.

     VI)  Design a TM which can multiply two positive integers.

     VII) NONDETERMINISTIC TURING MACHINES . 

 





question theory of automata from Mishra CHAPTER 5

 

question theory of automata from Mishra CHAPTER 5

1. REGULAR EXPRESSIONS

2. IDENTITIES FOR REGULAR EXPRESSIONS

3. NDFAs WITH A-MOVES AND REGULAR EXPRESSIONS

4. Any set L accepted by a finite automaton M is represented by

a regular expression.

5. CONVERSION OF NONDETERMINISTIC SYSTEMS TO

DETERMINISTIC SYSTEMS

6. ALGEBRAIC METHOD USING ARDEN'S THEOREM

7. CONSTRUCTION OF FINITE AUTOMATA EQUIVALENT

TO A REGULAR EXPRESSION.

8. EQUIVALENCE OF Two FINITE AUTOMATA

9. EQUIVALENCE OF Two REGULAR EXPRESSIONS

10. PUMPING LEMMA FOR REGULAR SETS

11. CLOSURE PROPERTIES OF REGULAR SETS

12. REGULAR SETS AND REGULAR GRAMMARS


question theory of automata from Mishra CHAPTER 6

 question theory of automata from Mishra CHAPTER 6


1. Construct a context-free grammar G generating all integers (with sign).

2. DERIVATION TREES

3. leftmost derivation and rightmost derivation.

4. AMBIGUITY IN CONTEXT-FREE GRAMMARS

5. If G is the grammar S -> SbS | a, show that G is ambiguous.

6. CONSTRUCTION OF REDUCED GRAMMARS.

7. ELIMINATION OF NULL PRODUCTIONS

8. ELIMINATION OF UNIT PRODUCTIONS

9. CHOMSKY NORMAL FORM

10. GREIBACH NORMAL FORM

question theory of automata from Mishra CHAPTER 7

 1. Model of a pushdown automaton.  ANSWER LINK + 

2. Definition -  pushdown automaton.  ANSWER LINK

3. instantaneous description (ID) of pushdown automaton. + ANSWER LINK

4. move of  pushdown automaton.  ANSWER LINK

5. deterministic pda ANSWER LINK

6. Construct a pda A accepting L = {WCWT } by final state. +  - ANSWER LINK

7. Construct a pda A accepting the set of all strings over {a, b} with equal  number of a's and b's. +
ANSWER LINK 

8. If L is a context-free language, then we can construct a pda  A accepting L by empty store, i.e. L = N(A).ANSWER LINK


question theory of automata from Mishra CHAPTER 4

 question theory of automata from Mishra CHAPTER 4 

1. DEFINITION OF A GRAMMAR

2. DERIVATIONS AND THE LANGUAGE GENERATED

BY A GRAMMAR

3. CHOMSKY CLASSIFICATION OF LANGUAGES

4. RECURSIVE AND RECURSIVELY ENUMERABLE SETS

THEORY OF COMPUTATION QUESTION SET:

 CHAPTER 3 : THE THEORY OF AUTOMATA  LINK

 CHAPTER 4 :   FORMAL LANGUAGES LINK

 CHAPTER 5 :  REGULAR SETS AND  REGULAR GRAMMARS LINK

 CHAPTER 6 : CFG LINK

 CHAPTER 7 :  PUSH DOWN AUTOMATA LINK

 CHAPTER 9 : TURING MACHINE  LINK